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Introduction 

Several scholars have demonstrated the affordances of quantitative reasoning (Smith & 

Thompson, 2007; Thompson, 1990, 2011) and covariational reasoning (Carlson et al., 2002; 

Saldanha & Thompson, 1998; Thompson, 1994b) for learning a variety of ideas in algebra, 

precalculus, and calculus. The situation presented in Table 1 below provides a context in which 

to discuss quantitative reasoning.   

Table 1 

Quantitative Situation 

Two brothers, Everett and Harrison, run a 400-meter race against each other. Since Everett is 
faster, he gives Harrison a 50-meter head start. Everett runs at a constant speed of 6.7 meters per 
second and Harrison runs at a constant speed of 5.4 meters per second. Both brothers run up to 
their respective starting lines so that they run the entire race at their respective constant speeds. 
 
Quantitative Reasoning 

Quantitative reasoning is a characterization of the mental actions involved in 

conceptualizing situations in terms of quantities and quantitative relationships. A quantity is an 

attribute, or quality, of an object that admits a measurement process (Thompson, 1990). One has 

conceptualized a quantity when she has identified a particular quality of an object and has in 

mind a process by which she may assign a numerical value to this quality in an appropriate unit 

(Thompson, 1994b). There are many quantities that one may conceive while thinking about the 

situation in Table  including: Everett’s race distance, the time elapsed since Everett passed his 

starting line, Everett’s running speed (all attributes of the race Everett runs), distance of 

Harrison’s head start, the time elapsed since Harrison passed his starting line, and Harrison’s 

running speed (all attributes of the race Harrison runs). It is important to note that quantities do 



not reside in objects or situations, but are instead constructed in the mind of an individual 

perceiving and interpreting an object or situation. Quantities are therefore conceptual entities 

(Thompson, 2011).  

Conceptualizing a quantity does not require that one assign a numerical value to a 

particular attribute of an object. Instead, it is sufficient to simply have a measurement process in 

mind and to have conceived, either implicitly or explicitly, an appropriate unit. Quantification is 

the process by which one assigns numerical values to some quality of an object (Thompson, 

1990). Note that one need not engage in a quantification process in order to have conceived a 

quantity, but must have in mind a quantification process whereby she may assign numerical 

values to the quantity (Thompson, 1994b). 

The quantities that one may construct upon analyzing a situation are not limited to those 

whose numerical values are provided, or attainable from direct measurements. For instance, 

considering the situation presented in Table 1, one may recognize as a quantity the total amount 

of time it takes for Everett to complete the race. As stated above, doing so involves 

conceptualizing a means of quantification (i.e., imagining a way to assign a numerical value to 

this attribute of Everett’s race). Defining a process by which one may assign numerical values to 

this quantity involves an operation on two previously defined quantities, Everett’s race distance 

and Everett’s running speed. Since Everett runs at a constant speed for a fixed distance (i.e., the 

quantities Everett’s race distance and Everett’s running speed do not vary), then the total amount 

of time it takes for Everett to complete the race is given by the ratio of Everett’s race distance to 

his running speed. Furthermore, because conceptualizing a way to quantify the total amount of 

time it takes for Everett to complete the race involves an operation on these two other quantities, 

we say that this new quantity results from a quantitative operation—its conception involved an 



operation on two other quantities. Quantitative operations result in a conception of a single 

quantity while also defining the relationship among the quantity produced and the quantities 

operated upon to produce it (Thompson, 1990, p. 12)1. It is for this reason that quantitative 

operations assist in one’s comprehension of a situation (Thompson, 1994b).  

It is important to note the distinction between a quantitative operation and a numerical or 

arithmetic operation. Arithmetic operations are used to calculate a quantity’s value whereas 

quantitative operations define the relationship between a new quantity and the quantities 

operated upon to conceive it (Thompson, 1990). In the example above, the process by which one 

may quantify the total amount of time it takes for Everett to complete the race involves an 

operation on the measures of two other quantities (Everett’s race distance and Everett’s running 

speed). Therefore, imagining a way to quantify this new attribute of Everett’s race 

simultaneously defines a relationship between the new quantity and the two quantities operated 

upon to measure it. Alternatively, claiming that the total amount of time it takes Everett to 

complete the race is 400/6.7 seconds is a numerical operation, not necessarily a quantitative one. 

While this numerical operation may proceed from one’s construction of the total amount of time 

it takes for Everett to complete the race as a quantitative operation, it is not necessarily the case. 

Should one not have in mind the quantities whose respective values are 400 and 6.7, then the 

statement, “The total amount of time it takes Everett to complete the race is 400/6.7 seconds” 

does not define a relationship between quantities but is rather a statement of fact. Therefore, 

numerical operations do not guarantee that one has constructed a quantitative relationship—“the 

conception of three quantities, two of which determine the third by a quantitative operation” 

(Thompson, 1990, p. 13). As Thompson (2011) notes, “Quantitative and numerical operations 

                                                
1 The page number cited here, as well as in all subsequent references to Thompson (1990), refers to the non-
publication draft available at http://www.patthompson.net/Publications.html. 



are certainly related developmentally, but in any particular moment, they are not the same” (p. 

42). Other quantitative operations that may be deduced from the task in Table 1 include the 

following:  

• Harrison’s race distance (determined by the difference of Everett’s race distance and the 

distance of Harrison’s head start), 

• Harrison’s total race time (determined by the ratio of Harrison’s race distance and 

Harrison’s running speed),  

• Everett’s distance run after some number of seconds since passing his start line 

(determined by the product of Everett’s running speed and the number of seconds elapsed 

since Everett passed his start line),  

• Harrison’s distance run after some number of seconds since passing his start line 

(determined by the product of Harrison’s running speed and the number of seconds 

elapsed since Harrison passed his start line),  

• the distance between Everett and Harrison after any number of seconds since the 

brothers passed their respective starting lines (determined by the absolute value of the 

difference of Everett’s distance run after some number of seconds since passing his start 

line and Harrison’s distance run after the same number of seconds since passing his start 

line), and 

• the win margin as a distance (determined by the difference of Everett’s race distance and 

the distance that Harrison has run after the number of seconds it takes for Harrison to 

finish the race)2 or as a time (determined by the absolute value of the difference of the 

                                                
2 This assumes one is aware of the fact that Everett wins the race.  



total amount of time it takes for Everett to complete the race and the total amount of time 

it takes for Harrison to complete the race). 

One may clearly deduce several quantitative operations in the simple situation presented 

in Table 1. Each of these quantitative operations implies a different quantitative relationship. 

Achieving a complete understanding of the situation involves coordinating these quantitative 

relationships into a coherent network, or quantitative structure. The diagram in Figure 1 

illustrates such a structure that one may construct after analyzing the situation in Table . The 

process of constructing a quantitative structure is called quantitative reasoning—the analysis of a 

situation into a network of quantitative relationships (Thompson, 1990)—and results in 

achieving a quantitative understanding of the situation. Thompson (1994) explains, “A person 

comprehends a situation quantitatively by conceiving of it in terms of quantities and quantitative 

operations. Each quantitative operation creates a relationship: The quantities operated upon with 

the quantitative operation in relation to the result of operating” (p. 14).  



 

Figure 1. Quantitative structure. 

A growing body of research (e.g., Castillo-Garsow, 2010; Confrey & Smith, 1995, Ellis, 

2007, Moore, 2012, 2014; Moore & Carlson, 2012; Oehrtman, Carlson, & Thompson, 2008; 

Thompson 1994b, 2011) has identified quantitative reasoning as a particularly advantageous way 

of thinking for supporting students’ learning of a wide variety of pre- and post-secondary 

mathematics concepts. Additionally, this body of research has demonstrated the diagnostic and 

explanatory utility of quantitative reasoning as a theory for how one may conceptualize 

quantitative situations. 

Covariational Reasoning 

Covariational reasoning refers to the mental actions involved in coordinating the values 

of two varying quantities while attending to how these values change in relation to each other 

(Carlson et al., 2002).  
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A study by Saldanha and Thompson (1998) gained insight into the mental operations 

involved in students conceptualizing and reasoning about the continuous covariation of 

quantities. The researchers conducted a teaching experiment with one 8th grade student to test 

their hypothesis that students’ engagement with tasks requiring the coordination of two sources 

of information simultaneously is favorable for conceiving of a graph as composed points that 

record the simultaneous state of two covarying quantities. According to Saldanha and Thompson, 

covariation entails coupling two quantities so that one may form a multiplicative object of the 

two quantities (p. 1-2). When forming a multiplicative object of two quantities, one develops the 

immediate and persistent realization that for every possible value that a given quantity can 

assume, the other quantity also has a value (Saldanha & Thompson, 1998, p. 2). 

To Saldanha and Thompson (1998), images of covariation are developmental. An early 

developmental stage involves one’s non-simultaneous coordination of the values of two 

quantities (i.e., one attends to the value of a quantity, then the value of other, then the value of 

the first, and so on). In a slightly more sophisticated form of covariational reasoning, one 

understands time as a continuous quantity, which supports the realization that two quantities’ 

values persist. More sophisticated still is the ability to imagine both quantities being tracked for 

some duration and recognize the correspondence between the two quantities as an emergent 

property of the image. Saldanha and Thompson describe continuous covariation as the 

understanding that if a quantity assumes different values at different moments in time, the 

quantity assumed all intermediary values during this interval of time.  

Carlson, et al. (2002) propose a framework for characterizing students’ mental actions 

while engaged in tasks involving dynamic function events. Their theoretical framework consists 

of a hierarchy of five mental actions of covariational reasoning along with five corresponding 



covariational reasoning levels. The authors define the first mental action (MA 1, coordination of 

quantities) as an individual’s recognition that a change in the value of one quantity corresponds 

to a change in the value of another. The second mental action (MA 2, coordination of direction 

of change) describes not only a recognition that the values of two quantities vary in tandem, but 

requires one to coordinate the direction of change in the value of one quantity with changes in 

the value of another. The third mental action (MA 3, coordination of amounts of change) 

involves one in attending to the amount of change in the value of one quantity with respect to the 

amount of change in the value of another. The fourth mental action (MA 4, average rate of 

change) focuses on one’s capacity to attend to the average rate of change of the value of one 

quantity with respect to the value of another. Finally, the fifth mental action (MA 5, 

instantaneous rate of change) describes one’s ability to attend to the instantaneous rate of change 

of the value of one quantity with respect to the value of another. Carlson et al. explain that the 

purpose of their proposed framework is to aid in the evaluation of covariational thinking to a 

greater extent than had been done previously. 

Thompson (2011) provides an additional account of the mental operations involved in 

conceptualizing and coordinating the simultaneous variation of the values of two quantities. He 

explains that to imagine variation in a quantity’s value is to expect the value of the quantity to 

differ at two different moments in (conceptual) time and to realize that the quantity’s measure 

assumed all values between the measure of the quantity at the beginning of the interval of time 

and the measure of the quantity at the end of the interval of time. Thinking about continuous 

variation therefore amounts to first anticipating an interval of time over which variation in a 

quantity’s value occurs, which allows one to expect that the quantity’s value will vary by a 

specific amount over this interval of time. One then imagines the quantity’s value varying in 



microscopic bits, each of which occurs over a very small interval of time. To imagine a 

quantity’s value varying continuously, one must realize that variation occurred within these very 

small intervals of time (i.e., one has to imagine that for every value between the initial and final 

values that the quantity assumed over this small interval of variation, there was a time within the 

small interval of time over which the variation occurred that the quantity assumed this value). 

 


